

FUSION 360 SIMULATION MANUAL

다우데이타 기술팀 Dec, 2021

CONTENTS

Fusion 360 Simulation Manual

1. 설치하기	2
2. Fusion 360 화면 구성	3
3. Fusion 360 Simulation 개념	5
4. Simulation Tutorials	
■ 모델 단순화	13
■ 정적 응력 해석	17
■ 고유 진동수 해석	28
■ 구조적 좌굴 해석	35
■ 열 해석	43
■ 열 응력 해석	55
■ 형상 최적화 분석	65
■ 비선형 정적 응력 해석	75
■ 이벤트 시뮬레이션 해석	
- SnapFit 커넥터 응력	83
- 롤링에 의한 강판 제조	91
■ 플라스틱 사출 성형	101

Fusion 360 Simulation Manual

본 Manual에 작성된 내용은 Autodesk에서 제공하고 있는 Help 자료를 기반으로 제작되었습니다.

https:/help.autodesk.com/view/fusion360/ENU/?guid=GUID-1C665B4D-7BF7-4FDF-98B0-AA7EE12B5AC2

1 설치하기

1) 제품 다운로드

A. http://www.appstreaming.autodesk.com/install/app/73e72ada57b7480280f7a6f4a289729f/

사이트 이동 시 자동 다운로드 진행

🔓 🍕 - Daou Office	x 🔄 NAVER x 🙆 BASE-인션- 영제	지나여성플카스 [®] x 👌 Autodesk WebDeployment x +		o ×
€ - 7 C D ▲ +2	의 보험 appoteanning.autodesk.com/instal/app/13e1/2asa5/5/48 위면대학교 ONR 🔣 NAVER 💽 네이비 지도. 🕝 구용 👩 변치는	의 전덕샷 속도 📕 키페 📕 번역 🏭 외부레임 📕 Daoudata	📕 Autodesk 📕 1251.1342 📕 Autodesk Help 📕 2743 🗧 Popular mod	9년 13 · · · · · · · · · · · · · · · · · ·
	FUSION 360 Features Why Fusion 360	 Learn & Support 	SUBSCRIBE FREE TRIAL	
	Thank you for downloa Fusion 360	ading		
	If your download does not begin automatically, ple	ease try again.		
	Download, sign-in, and sta	rt designing!		
	Ensure system requirements are met Make sure your machine meets these	Get installation help Having trouble getting Fusion 360 installed? Get help here.	Familiarize yourself with Fusion 360 Quickly learn how to navigate the Fusion	

2) Fusion360 설치 시 인터넷 연결 필수 (Autodesk 로그인 필요)

F Autodesk Fusion 360			- 🗆 X
	Sign in	۵	
	Email		
	hame@example.com		
	NEXT		
	NEW TO AUTODESK? CREATE ACC	COUNT	

2 Fusion 360 화면 구성

A. Fusion 360 화면 구성

B. 인터페이스 기본 사항

Fusion 360은 기본적인 아이콘 화면 구성 명령 UI가 상단 탭에 위치

솔리드	곡면	메쉬	판금	도구	관리						
			6			=+	· 📑 🕅	01	++		C.
	작성 *				수정 *		조립 🔻	구성 *	검사▼	삽입 ▼	선택 *

또한 Fusion 360에서는 일반적으로 상황에 맞는 메뉴 위에 있는 표식 메뉴가 사용됩니다. 각 환경에서 자주 사용되는 명령은 표식 메뉴에 나열됩니다. 표식 메뉴를 시작하려면 그래픽 창에서 마우스 오른쪽 버튼을 클릭합니다.

\sim	\otimes	\geq	\leq	
\sim	Ŕ	반복		\sim
삭제	×	\leq	ß	밀고당기기
명령취소 숙	Ì	~	Â	→ 명령복구
이동/복사	+	$\overline{\times}$		구멍
$\langle \rangle$		▷케치 ▼	Ŕ	\otimes
\$ \$ \$	초점이 줌 구속된 회전 중 회전 중	동 궤도 심 설정 심 재설정	20	
	분리해 작업공	제 간		, 8
	돌출 모깎기			e f

C. Autodesk Fusion 360 탐색 도구

■ View Cube(투상도 상태 표시 상자)

3D 환경에서 View Cube 도구는 그래픽 창에서 기본값으로 표시되며, 모델 뷰를 다시 설정할 수 있게 해줍니다. 2D 환경에서, View Cube는 도면을 바라보는 방향을 지정할 수 있게 해줍니다. View Cube의 표면, 가장자리 또는 모서리를 선택하여 모델에 대한 다양한 뷰방향을 나타낼 수 있습니다. 모델은 View Cube가 클릭될 때, 선택한 뷰 방향으로 회전합니다.

■ 탐색 막대 사용

탐색 막대는 현재 모형 창의 하단에 위치에 있습니다. 여기에는 통합 및 제품별 탐색 도구에 대한 영역이 모두 포함됩니다. 면 보기로 평면형 요소 방향 지정

그래픽 창에서 화면표시를 줌하고 회전합니다.

ㄱ. 탐색 막대에서 보기 🛅 클릭합니다.

ㄴ. 그래픽 창에 있는 모서리, 선 또는 평면형 도면요소를 클릭합니다.

ZOOM

모형에서 모형의 모든 도면요소가 그래픽 창에 맞도록 뷰를 줌합니다. 도면에서 모든 활성 시트가 그래픽 창에 맞도록 뷰를 줌합니다. 마우스 왼쪽 클릭하여 모형을 줌 할 수 있습니다.

<mark>3</mark> Fusion 360 Simulation 개념

Fusion 360 Simulation은 특정 조건에서 설계가 어떻게 수행되는지 이해하는 데 도움이 되는 검증 도구입니다. 해석의 전문가가 실제 조건의 정확한 결과를 얻기 위해 상세한 분석을 수행하는 데 많은 시간이 할애하게 됩니다. 이는 해석의 분석에서 얻는 경향 및 동작 정보를 기반으로 설계를 예측하고 개선하는 경우가 많기 때문입니다. 설계 단계 초기에 이러한 분석을 수행하면 전체 프로세스를 크게 개선할 수 있습니다.

연구 유형	위치 해결
정적 응력	🛃 Local or 🛃 Cloud
비선형 정적 응력	🛃 Cloud
이벤트 시뮬레이션	🛃 Cloud
전자 냉각	🛃 Cloud
모달 주파수	🛃 Local or 🛃 Cloud
구조적 좌굴	🛃 Cloud
열의	🛃 Local or 🛃 Cloud
열용력	🛃 Local or 🛃 Cloud
형상 최적화	🛃 Cloud
플라스틱 사출 성형	🛃 Cloud

A. 설계 환경 변경

Design 또는 Open 된 모델을 기준으로 Simulation을 진행하기 위해서는 Fusion 360의 설계 환경을 변경해야 합니다. 아래 이미지와 같이 드롭다운 메뉴를 열어 시뮬레이션을 선택합니다.

B. 시뮬레이션 도구 모음

본격적인 해석을 진행하기 전, 해석의 유형을 선택하거나 모델의 단순화를 진행합니다. 각 해석의 유형에 대한 설명은 아래와 같습니다.

■ 모형 단순화

시뮬레이션에 사용되는 모델은 제조 모델보다 덜 상세할 수 있습니다. 이는 모델의 형상이 복잡할수록 메쉬의 복잡성을 크게 증가시키며, 파일의 크기 및 해결의 시간을 증가시키는 원인이 됩니다. 따라서 잠재적으로 불필요한 기능인 외부 모서리의 양각 또는 돌출된 각인 형상 등을 변경합니다.

■ 정적 응력

정적 응력 해석은 유한 요소 구조 해석의 가장 일반적인 유형 중 하나입니다. 구성요소 또는 조립품은 다양한 하중 조건과 그에 따른 응력, 변형 및 변형 결과를 분석하여 설계 실패 가능성을 결정합니다.

■ 고유 진동수

모든 제품은 고유한 진동수를 가지고 있으며 가진원에 의한 진동에 의한 공명 현상(공진)에 의한 파손을 회피할 목적으로 결정합니다.

■ 전자 장치 냉각

인쇄 회로 기판(PCB) 구성 요소의 열 관리는 구성 요소가 발산하는 열의 양, 환경, 기판의 구성 요소 레이아웃 및 인클로저 설계를 비롯한 여러 요인에 따라 달라집니다. 회로에서 너무 많은 열이 발생하면 과열로 인해 부품이 고장날 위험이 있으므로 냉각에 대한 전략을 사용해야 합니다.

■ 열

열 분석은 형상 전반에 걸친 에너지 전도를 계산합니다. 열 해석을 실행하려면 모델 재료에 전도도가 있어야 하며 열 전달이 발생하려면 온도 차이가 있어야 합니다. 열은 항상 온도가 감소하는 방향으로 전달됩니다. 설계 매개변수에는 종종 부품 고장을 일으키는 최대 임계 온도가 포함될 수 있습니다. 설계가 더 큰 설계 또는 시스템의 일부인 경우

열 흐름을 이해하고 제어하는 것이 흥미로울 수 있습니다.

■ 열 응력

열 응력 유형은 일부 열 부하에 의해 발생된 응력을 평가하는 데 사용됩니다.

예를 들어, 일부 온도 변화의 결과로 부품이 변형되는지? 열 부하가 발생한 후에도 구성 요소를 설계된 대로 조립할 수 있는지? 열 응력 해석을 사용하여 이러한 하중으로 인한 응력이 부품 수명에 어떤 영향을 미칠 수 있는지 알아볼 수 있습니다.

■ 구조적 좌굴

좌굴은 높은 압축 응력을 받을 때 구조 부재의 파손을 나타냅니다. 압축 응력이 재료의 최종 압축 응력 미만인 경우에도 길고 얇은 기둥에서 좌굴이 발생합니다. 형상이 변형되기 시작하면 더 이상 초기 힘의 일부를 견딜 수 없게 되기에, 좌굴 해석을 사용하여 지정된 하중 세트가 좌굴을 유발하는지 확인하고 좌굴 모드의 형태를 찾습니다.

■ 비선형 정적 응력

비선형 정적 응력 해석 스터디는 비선형 소스가 솔루션에 도입되고 선형 정적 응력 해석의 가정이 더 이상 유효하지 않을 때 사용해야 합니다. 비선형성에는 재질, 기하학적, 하중 및 경계 조건 비선형성의 네 가지 일반적인 형태가 있습니다.

■ 이벤트 시뮬레이션

이벤트 시뮬레이션은 질량, 속도, 가속도, 관성 및 감쇠 효과를 고려하는 완전 동적 분석 도구입니다. 따라서 영향을 형성하는 작업 및 기타 여러 동적 이벤트를 분석하는 데 유용합니다. 지정된 값 이상의 변형률에서 메쉬 요소를 자동으로 제거하여 부품 파손을 시뮬레이션 할 수 있습니다.

■ 쉐이프 최적화

가볍고 구조적으로 효율적인 부품을 설계하는 데 관심이 있는 경우 형상 최적화 연구를 사용해야 합니다. 형상 최적화는 지정한 구속조건 및 하중을 기반으로 부품 강성을 최대화하기 위한 지능형 전략을 제공합니다. 형상 최적화 연구의 결과는 설계 개선을 안내하는 데 사용할 수 있는 3D 메쉬입니다.

새 학습				×
	시뮬레이션에서 사용할 혐성) 만순화		
		비선왕 정적 응혁	이벤트 시뮬레이션	쉐이 프 최적화 형상에 적용된 하중 및 경계 조건에 따라 부품을 경량이면서 구조적으로 효율적이 되도록 최적화합니다.
에이프 최적화 학습 유형 선택 도움	플라스틱 사출 성형 (미리보기) 응말 보기			학습 작성 취소

◀ 검색기	0
🔺 🚼 시뮬레이션	
🗋 단위: 사용자화 🥒	
4 🔍 🔓 편집 개선 모형 1 💿 🖉	
▶ 🖬 명명된 뷰	\geq

🧧 결과

각 명령을 수정하기 위해서는 명령 노드 위로 마우스를 가져가면 편집버튼이 나타납니다.

곳애	"[시노 사용일 수 있습니다	
4 2	검색기	0
\sim	🔚 시뮬레이션	\sim
\geq	🗋 단위: 사용자화	
	🖉 💿 🚹 시뮬레이션 모형 1 💿 >	
	D 🖬 명명된 뷰	
	▶ 🕸 🖬 원점	\sim
\gtrsim	🖉 🖬 모형 구성요소	
*	 오 · · · · · · · · · · · · · · · · · · ·	
	📕 학습 1 - 정적 응력	<u> </u>
~	 학습 재질 	
\gg	🕨 💿 📑 하중 조건1 💿	
×	□ 접촉	\sim
	🔍 🌆 메쉬	\sim

도구막대의 다른 곳에서도 사용할 수 있습니다

■ Browser (검색기) 검색기는 디자인에 있는 데이터의 보기를 트리 형식으로 표시합니다. 일부 명령은 검색기에 고유하게 있으며, 일부 명령은 그래픽 창이나

C. 시뮬레이션 사용자 인터페이스

■ 플라스틱 사출 성형

또한 평평한 표면이 평면에서 얼마나 벗어나는지 확인하여 이것이 어셈블리의 성능에 영향을 미칠 수 있는지 확인할 수도 있습니다.

플라스틱 사출 성형 연구는 플라스틱 부품의 성형 가능성, 시각적 결함, 변형의 정도를 확인 합니다.

Simulation Toolbar

Simulation 작업 공간 도구 모음의 탭과 패널에서 명령을 실행합니다.

시뮬레이션의 유형을 선택하게되면 명령을 실행하기 위한 Toolbar가 생성되며, 이를 활용하여 해석의 조건을 정의합니다. 또한, 각 유형에 따라 Toolbar가 나타내는 명령 아이콘들이 변경됩니다.

해석을 완료하게 되면 자동으로 결과 탭으로 변경되어 해석의 결과를 확인할 수 있습니다.

비교 탭은 각각의 다른 결과를 비교 평가 하기 위하 사용되는 명령 툴입니다. 예를 들어, 변형의 결과와 응력의 결과를 바로 보고 비교할 수 있습니다.

4 Simulation Tutorials

이 학습 콘텐츠 영역은 Fusion 360의 각 해석 유형에 대한 시뮬레이션 프로세스를 안내하는 일련의 자습서로 구성됩니다. Fusion 360에서 제공된 CAD 모델을 사용하여 시뮬레이션 도구와 일반적인 워크플로 습관에 익숙해집니다.

🚺 모델 단순화

단순화 도구를 사용하여 시뮬레이션에 불필요한 본체 또는 피쳐를 제거합니다. 또한 면을 분할하여 면의 일부에만 하중이나 구속조건을 제한할 수 있습니다. 마지막으로, 시뮬레이션 결과가 모델 변형의 영향을 받는 방식을 측정하기 위해 다른 지오메트리를 변경할 수 있습니다. 최적의 지오메트리가 결정되면 설계 작업 공간에서 기본 프로덕션 모델을 동일하게 변경할 수 있습니다.

A. Remove Features (피쳐 제거) 🛄

Remove Features를 통하여 모델의 Fillet (모깍기), Hole (구멍), Chamfer (모따기), Extrude (돌출), Revolve (회전), Other (기타)를 수정할 수 있습니다.

≬● 피쳐 제거	44
본체	😽 선택 없음
▼ 田内	
모두 선택	
모깎기	
구멍	
모따기	
돌출	
회전	
기타	
0	닫기

① 📃 Remove Features(피쳐 제거)를 사용하기 위해서는 보기를 클릭하거나 드롭 다운 메뉴에서 🔍 피쳐 제거 를 클릭 합니다.

E Autodesk Fusion 360				
III I * II 6 * 7 *				
실려드 단순화 사물레이션 ▼ 작성 ▼	표면 단순화 도구	구성 • MOLDFLOW •	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	단순화 마침 ▼
◀ 검색기	民 피쳐 제거 💕 면 제거			\times
시 · 사물리이션 모형 1 · ·	 기본체로 대체 말고 당기기 Q 			
□ 단위:mm ▶ ■ 명명된 뷰 ▶ ▲ 외정	으로 모깎기 F 오 다 다 기		0	
▶ ■ 보형 구성요소	교 쉘 《 기운기	1	Se de	

④ 수정 완료

③ 수동 피쳐 및 피쳐 크기를 이용하여 불필요한 제거 위치 수정 후 삭제

B. Removing Faces (면 제거)

선택한 면과 인접 면을 제거하여 형상을 적절하게 수정하여 모델을 단순화합니다.

① 📝 Removing Faces(피쳐 제거)를 사용하기 위해서는 보기를 클릭하거나 드롭 다운 메뉴에서 🗗 면제거 를 클릭합니다.

② 제거할 면 선택(연결된 면 자동 선택) 후 삭제

③ 수정 완료

C. 그 외.

원활한 해석을 위해서 제품 형상을 수정해야 할 때 사용되는 기능들이 있습니다.

Press Pull	선택한 피쳐 형상대로 돌출시키거나 제거 할 수 있습니다.
Fillet	선택한 모서리에 루프 및 <mark>피쳐</mark> 에 모깍기&라운드를 배치합니다.
Rule Fillet	선택한 면에 루프 및 피쳐 에 모깍기&라운드를 배치합니다.
Chamfer	뾰족한 모서리를 잘라냅니다.
Shell	정의한 벽 두께를 갖는 속이 빈 부품을 만듭니다.
Draft	지정된 면에 테이퍼를 적용합니다.
Combine	2개 이상의 Body를 단일 Body로 결합 합니다.
Replace Face	기준으로 잡은 면으로 선택한 면을 이동 및 결합

D. Model Export

모델 단순화를 진행한 결과를 파일로 저장하기 위해서는 아래의 방법을 사용해야 합니다. (메뉴의 내보내기는 단순화가 적용된 모델이 아닌, 설계 기준 모델이 내보내기 됩니다.)

① 검색기에 나타난 시뮬레이션 모형 1을 우-클릭 후 내보내기 선택

🖉 🔍 🚺 . 사용레이션 모	
🛄 단위:mm	🔝 새 구성요소
▷ 📰 명명된 뷰	💕 선택세트 작성
	📲 강체 그룹
D 📰 모형 구성요소	🚷 모양 🛛 A
	< 텍스처 맵 컨트롤
	특성
	🌔 사용 내역
	내보내기
	다른 이름으로 복사본 저장
	④ 표시/숨기기 V
	◎ 모든 구성요소 표시
	◎ 모든 본체 표시
	불투명도 제어
	😭 새 시뮬레이션 모형
	시뮬레이션 모형 복제
	💥 시뮬레이션 모형 삭제

② 내보내기 창에서 이름, 파일 유형, 저장 위치를 선택하고 내보내기를 선택합니다.

내보내기				×
이를:				
시뮬레이션 모형 1				
유형				
Fusion 파일(*.f3d)				-
Fusion 파일(*.13d) IGES 파일(*.1gs *.1ges) SAT 파일(*.sat) SMT 파일(*.sat) STEP 파일(*.stp *.step USD 파일(*.usd2))			
☑ 내 컴퓨터에 저장	E:/Daoudatran)/Model			
			취소	내보내기